

Filippo Passante, Genova Smart Week, November 2018

Sustainable Transportation Impact on Power Systems

Sustainable transportation

ABB is at the forefront of e-mobility and sustainable transportation

An environmental issue Emissions from vessels during port stay

More than 100,000 Vessels dock at

+ Noise

+ Noise

+ Emissions

CO₂, SO_x, NO_x and PPM

+ Vibration

- Vibratio

Benefits

With shore-to-ship power solutions

Cruise ship connected to the grid in the port

Could annually save

CO₂

Equivalent to about

2,500 Cars

Ship emissions Current and ongoing regulations

- Global Sulphur Limit (International Maritime Organization)
- Sulphur Emission Control Areas (SECA)
- EU Regulations (during vessel port stay)

24 September 2018

By voting the Ertrug Report, the Transport committee of the EU Parliament pointed out that disparities in energy taxation for shore-side supply for ships should be addressed

2 October 2018

Decision (EU) 2018/1491 authorizing Spain to apply a reduced rate of excise duty to electricity directly supplied to vessels at berth in a port

- Existing Emission Control Area
- Potential future Emission Control Area

Shore-to-ship power

The ABB solution to eradicate ship emissions at berth

Shore-to-ship powerSpecific requirements for each type of vessel

HVSC or LVSC – Low Power

● HVSC – High Power

Special Application

Characteristics	RORO/Ferry	Container	● Cruise	LNG/Tanker/ FSU/FPSO	Shipyard/Navy
Voltage	11 kV or low voltage	6.6 kV	6.6 and 11kV	6.6 kV	6.6, 11 kV or low voltage
Max power consumption	6,5 MVA	7,5 MVA	16/20 MVA	10 MVA	Case by case
Frequency	60 and 50 Hz	60 Hz mainly	60 Hz mainly	60Hz	50 and 60 Hz
Plugs/cables (per connection)	1	2	4+1	2/3	Case by case
Transformer	Onboard	Onshore	Onshore	Onshore	Case by case
Layout	Not critical	Critical	Critical	Critical	Not critical
Load profile	Partially controlled	Partially controlled	Flat profile	Flat profile	Case by case
Protect selectivity	Critical	Not critical	Critical	Critical	Case by case
Cable management system	Mid cost	Low cost	High cost	Mid cost	Case by case

Are plug-in EV relevant to Power Systems?

Deployment scenarios for the stock of electric cars to 2030

The most realistic scenarios, project a total number of cars in 2030 between 60 and 110M (between 2 and 5M in Italy¹)

If unconstrained, the charging demand of this exponential expansion of vehicles, potentially threatens the normal operation of current power systems.

How do PEVs affect Power Systems?

Main Impacts and Sections Affected

What factors determine the Impact PEVs have?

PEVs network impacts depend on several factors.

PEVs do not behave as any other conventional load!

Face a varied and evolving charging installed base Residential, commercial and public charging

AC	DC	DC Fast	DC High Power	
3-22 kW	20-25 kW	50 KW	150 to 350kW+	
4-16 hours	1-3 hours	20-90 min	10-20 min	>

Additional impacts from e-Bus Systems deployment Different needs, different solutions, different impacts on the power system

flash charging

- 600 kW fully automated fast charging stations installed at some bus stops, 15-20 second charging time, <1s connection time
- IEC 61851-23 compliant
- Cost-optimal onboard batteries
- Energy storage for peak shaving available
- TCO optimized system solution

Opportunity charging

- Charge electric buses in 3-6 minutes
- Automated 4-pole rooftop connection IEC 61851-23 standard
- Power available from 150 kW to 600 kW

Overnight charging

- Chargers from 50 kW to 150 kW (high power fast charging)
- A single 150 kW charger can charge up to 3 buses reducing the total charge load from 450 kW to 150 kW
- In an overnight session (6 hours) three 300 kWh buses can be fully charged

Solutions

Passive and Active Strategies

Smart ChargingGrid-to-Vehicle and Vehicle-to-Grid

G₂V

G2V implies that the charging rate of the vehicle (Pch) can be dynamically adjusted.

V2G

V2G implies that the charging rate of the vehicle (Pch) cannot only be dynamically adjusted, but also the direction of the power flow can be changed

Smart ChargingActive Network Management

Flexibility Services (Demand Response)

O------

 Asset Usage Optimization

- Voltage limits
- Phase unbalances

;.....

- Renewable Energy
 Generation
 Support
 (Overproduction)
- Exploitation
 Optimization
 (Storage V2G)

Smart ChargingActive Charge Management

Solutions for remote control of charging infrastructures ABB Ability Collaborative Operations for electrical mobility

#