

Tecnologie medicali Ricerca ed innovazione a Genova

[My personal view on Genova's climate for medical technology research and innovation]

Leonardo De Mattos

Head of Biomedical Robotics Lab Department of Advanced Robotics

Biomedical Robotics Laboratory

World-class R&D in robotic systems for precision medicine

- Human-centered robotic technologies
- Direct impact on health and well-being of people
- Intelligent interfaces & mechanisms
 - Diagnosis & Surgery
 - Assistive communications
 - General healthcare
 - Biomanipulations

ASSISTIVE SYSTEMS FOR AUGMENTED CONTROL

novel technologies to augment capabilities and performance beyond humanly possible

BRL team

Clinical Partners

- Ospedale San Martino, Genova
- Istituto Gianna Gaslini, Genova
- Ospedale Niguarda, Milano
- Fondazione Sanità e Ricerca, Roma

Genova

A great place for medical technology research and development

ENT microsurgery

Fetal surgery

Tumor detection

Pediatric neurosurgery

Pediatric catheterization

Prof. Giorgio Peretti, Prof. Francesco Mora, Prof. Luca Guastini

Prof. Armando Cama, Prof. Dario Paladini Dr. M. Ravegnani

The best part of my work...

Transoral Laser Microsurgery (today)

- Micrometric precision
- Long operating distance

CALM Surgical System

Computer-Assisted Laser Microsurgery

- ✓ Robotic Laser Micromanipulator
- Negligible impact on surgical workflow
- √ Tablet-based laser control
- ✓ Add-on system for available lasers & microscopes

Comparative Trials – Sample Results

Traditional Laser Micromanipulator

Computer-Assisted Laser Micromanipulator

CALM user trials

- 57 international expert surgeons
- Realistic Transoral Laser Microsurgery (TLM) setup
- Currently under certifications for clinical trials

Deshpande et al., "Design and Usability Study of a Next Generation Computer-Assisted System for Transoral Laser Microsurgery," OTO-Open, Feb 2018

Endoscopic Robot-Assisted Laser Microsurgery

µRALP surgical system

Micro-Technologies and Systems for Robot-Assisted Laser Phonomicrosurgery

Smart Probe

- Needle-based bioimpedance sensor
 - Tissue classification
 - Cancer detection
- Certified for clinical trials
- Waiting ethical committee approval

Smart systems for PIVC Peripheral Intravenous Catheterization

- Often more than 3 attempts in pediatric patients
- Can lead to serious issues (e.g. extravasation injuries)

CathBot A hand-held robotic device for PIVC

- Automatically stops the needle insertion
- 2. Inserts the catheter
- 3. Retracts the needle
- all with a simple push forward

"A perfect catheterization each time, every time"

CathBot A hand-held robotic device for PIVC

Phantom vein diameter: 2 mm

- Automatically stops the needle insertion
- 2. Inserts the catheter
- 3. Retracts the needle
- all with a simple push forward

"A perfect catheterization each time, every time"

Cheng et al., "A new venous entry detection method based on electrical bio-impedance sensing," Annals of Biomedical Engineering, April 2018 Cheng, Z., Davies, B., Caldwell, D., Mattos, L., "A hand-held robot for precise and safe PIVC," (under review) IEEE Robotics and Automation Letters (RA-L)

Results

- Baby arm trainer
- Naïve subjects

Conventional

12%

Zero first stick accuracy

CathBot

86% Success rate

100% first stick accuracy

ENCOURAGING YOUNG SURGEONS AND ENGINEERS

21-22 March 2019 Genoa, Italy

Thank you!

Leonardo De Mattos

Head of Biomedical Robotics Lab Department of Advanced Robotics

leonardo.demattos@iit.it